
UNSUPERVISED PERFORMANCE EVALUATION OF RESULTS 
 

1) Liu and Yang’s evaluation function: 
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where N is number of obtained regions after segmentation, jS – area of region j  and 2
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–  squared color error (or the gray level) that is calculated as  
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where kx  is the gray level of the pixel, and the x means gray level of the region.  
 
2) Borsotti, Campadelli and Schettini function F, to improve upon Liu and Yang’s 
method: 
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were SI – represents the image surface;  
N(a) – denote the number of regions in the segmented image having an area exactly a; 
MaxArea – is the area of the largest region in segmented image. 
 
3) Borsotti et al. criterion 
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were N(Sj) – denote the number of regions in the segmented image having an area exactly 
Sj 

 
4) Intra-region uniformity criterion of Levine and Nazif [13]: 
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f(x) – the intensity of pixel x 
C –normalized coefficient, equal to the maximum possible variance 
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5) Entropy-based evaluation method [12] 
As the authors say the entropy is a measure of the disorder within a region and is a natural 
characteristic to incorporate into a segmentation evaluation method.  
The entropy for region j is defined as: 
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were L୨(m)/S୨  represents the probability that a pixel in region R୨ has a luminance value 
of m.  
The notation H୴൫R୨൯  was simplified to  H൫R୨൯  with the default feature v being 
luminance. H. Zhang et al. define the expected region entropy of image I: 
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They propose to combine the both the layout entropy and the expected entropy in 
measuring the effectiveness of a segmentation method: 

 
E = H୪(I) + H୰(I). 

 


